CIVL 4111 Design of Structural Systems

Credit: 6 Points Availability: Semester 1

Pre-requisite courses:

1) CIVL3110 Structural Analysis
2) CIVL3111 Structural Steel Design
3) CIVL3112 Structural Concrete Design

This course includes three sections:
1) Steel structural systems (Week 1-8 including study break week, 7 weeks)
2) Concrete structural systems (Week 9-12, 4 weeks)
3) Composite structural system (Week 13-14, 2 week)

Week 1 General steel structure design
L1 General structural system design
L2 Wind load
L3 Earthquake load

Week 2 Member design
L1 Design of members
L2 Lateral buckling of beams
L3 Torsional effect

Week 3 Design of steel Connections
L1 Bolt connections
L2 Weld connections
L3 Purlins and side rails

Week 4 Plastic analysis and design
L1 Plastic analysis and design 1
L2 Plastic analysis and design 2
L3 Examples

Week 5 Design of girder system
L1 Crane girders
L2 Unstiffed plate girder
L3 Stiffed plate girder

Week 6 Design of truss system
L1 Truss loading and analysis 1
L2 Truss loading and analysis 2
L3 Design examples

Week 7 Study break (5 April to 11 April)
Week 8 Design of structural steel frameworks
L1 Unbraced steel frame design
L2 Braced steel frame design
L3 Revision

Week 9 General concrete structure design
L1 General concrete structure design
L2 Continuum beam I
L3 Continuum beam II

Week 10 RC wall, slabs and flooring systems
L1 RC wall
L2 Slab and flooring system I
L3 Slab and flooring system II

Week 11 Prestressed concrete
L1 Prestressed concrete design
L2 Prestressed concrete beam
L3 Prestressed concrete slab

Week 12 Reinforced concrete structure design
L1 Unbraced RC frame system
L2 Braced RC frame system
L2 Design example

Week 13 Steel-concrete composite structures
L1 Steel-concrete composite structures
L2 Composite floor I
L3 Composite floor II

Week 14 Steel-concrete composite structures
L1 Bridge Design I
L2 Bridge Design II
L3 Revision

References:
<table>
<thead>
<tr>
<th>Week</th>
<th>Beginning</th>
<th>Lectures</th>
<th>Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 Feb</td>
<td>General design concept</td>
<td>Wind load</td>
</tr>
<tr>
<td>2</td>
<td>1 March</td>
<td>Design of members</td>
<td>Lateral buckling of beams</td>
</tr>
<tr>
<td>3</td>
<td>8 March</td>
<td>Bolt connections</td>
<td>Weld connections</td>
</tr>
<tr>
<td>4</td>
<td>15 March</td>
<td>Plastic analysis and design I</td>
<td>Plastic analysis and design II</td>
</tr>
<tr>
<td>5</td>
<td>22 March</td>
<td>Crane girder design</td>
<td>Un stiffed plate girder</td>
</tr>
<tr>
<td>6</td>
<td>29 March</td>
<td>Truss loading and analysis I</td>
<td>Truss loading and analysis II</td>
</tr>
<tr>
<td>7</td>
<td>5 April</td>
<td>study break</td>
<td>study break</td>
</tr>
<tr>
<td>8</td>
<td>12 April</td>
<td>Unbraced steel frame design</td>
<td>Braced steel frame design</td>
</tr>
<tr>
<td>9</td>
<td>19 April</td>
<td>General concrete structure design</td>
<td>Continuous beam I</td>
</tr>
<tr>
<td>10</td>
<td>26 April</td>
<td>RC wall</td>
<td>Slab and flooring system I</td>
</tr>
<tr>
<td>11</td>
<td>3 May</td>
<td>Prestressed concrete design</td>
<td>Prestressed concrete beam</td>
</tr>
<tr>
<td>12</td>
<td>10 May</td>
<td>Unbraced RC frame system</td>
<td>Braced RC frame system</td>
</tr>
<tr>
<td>13</td>
<td>17 May</td>
<td>Steel-concrete composite structures</td>
<td>Composite floor</td>
</tr>
<tr>
<td>14</td>
<td>24 May</td>
<td>bridge design I</td>
<td>bridge design II</td>
</tr>
</tbody>
</table>
Assessment:
1) 20% based on group project
2) 40% mid-term assessment for steel structure design
3) 40% final exam for concrete and composite structure design